Abstract
Abstract
Label-free shotgun proteomics is an important tool in biomedical research, where tandem mass spectrometry with data-dependent acquisition (DDA) is frequently used for protein identification and quantification. However, the DDA datasets contain a significant number of missing values (MVs) that severely hinders proper analysis. Existing literature suggests that different imputation methods should be used for the two types of MVs: missing completely at random or missing not at random. However, the simulated or biased datasets utilized by most of such studies offer few clues about the composition and thus proper imputation of MVs in real-life proteomic datasets. Moreover, the impact of imputation methods on downstream differential expression analysis—a critical goal for many biomedical projects—is largely undetermined. In this study, we investigated public DDA datasets of various tissue/sample types to determine the composition of MVs in them. We then developed simulated datasets that imitate the MV profile of real-life datasets. Using such datasets, we compared the impact of various popular imputation methods on the analysis of differentially expressed proteins. Finally, we make recommendations on which imputation method(s) to use for proteomic data beyond just DDA datasets.
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献