kTWAS: integrating kernel machine with transcriptome-wide association studies improves statistical power and reveals novel genes

Author:

Cao Chen1,Kwok Devin2,Edie Shannon3,Li Qing1,Ding Bowei2,Kossinna Pathum1,Campbell Simone4,Wu Jingjing2,Greenberg Matthew2,Long Quan5

Affiliation:

1. Department of Biochemistry & Molecular Biology, University of Calgary

2. Department of Mathematics & Statistics, University of Calgary

3. Department of Biology, Queen's University

4. Heritage Youth Researcher Summer Program

5. Departments of Biochemistry & Molecular Biology, Medical Genetics and Mathematics & Statistics

Abstract

Abstract The power of genotype–phenotype association mapping studies increases greatly when contributions from multiple variants in a focal region are meaningfully aggregated. Currently, there are two popular categories of variant aggregation methods. Transcriptome-wide association studies (TWAS) represent a set of emerging methods that select variants based on their effect on gene expressions, providing pretrained linear combinations of variants for downstream association mapping. In contrast to this, kernel methods such as sequence kernel association test (SKAT) model genotypic and phenotypic variance use various kernel functions that capture genetic similarity between subjects, allowing nonlinear effects to be included. From the perspective of machine learning, these two methods cover two complementary aspects of feature engineering: feature selection/pruning and feature aggregation. Thus far, no thorough comparison has been made between these categories, and no methods exist which incorporate the advantages of TWAS- and kernel-based methods. In this work, we developed a novel method called kernel-based TWAS (kTWAS) that applies TWAS-like feature selection to a SKAT-like kernel association test, combining the strengths of both approaches. Through extensive simulations, we demonstrate that kTWAS has higher power than TWAS and multiple SKAT-based protocols, and we identify novel disease-associated genes in Wellcome Trust Case Control Consortium genotyping array data and MSSNG (Autism) sequence data. The source code for kTWAS and our simulations are available in our GitHub repository (https://github.com/theLongLab/kTWAS).

Funder

NSERC Discovery

Canada Foundation for Innovation JELF

New Frontiers in Research Fund

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3