Depiction of tumor stemlike features and underlying relationships with hazard immune infiltrations based on large prostate cancer cohorts

Author:

Zhang Chuanjie1,Chen Tianhe1ORCID,Li Zongtai2,Liu Ao1,Xu Yang1,Gao Yi1,Xu Danfeng1

Affiliation:

1. Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China

2. Department of Medical Oncology, Gaozhou People's Hospital, Gaozhou 525200, China

Abstract

Abstract Prostate cancer stemness (PCS) cells have been reported to drive tumor progression, recurrence and drug resistance. However, there is lacking systematical assessment of stemlike indices and associations with immunological properties in prostate adenocarcinoma (PRAD). We thus collected 7 PRAD cohorts with 1465 men and calculated the stemlike indices for each sample using one-class logistic regression machine learning algorithm. We selected the mRNAsi to quantify the stemlike indices that correlated significantly with prognosis and accordingly identified 21 PCS-related CpG loci and 13 pivotal signature. The 13-gene based PCS model possessed high predictive significance for progression-free survival (PFS) that was trained and validated in 7 independent cohorts. Meanwhile, we conducted consensus clustering and classified the total cohorts into 5 PCS clusters with distinct outcomes. Samples in PCScluster5 possessed the highest stemness fractions and suffered from the worst prognosis. Additionally, we implemented the CIBERSORT algorithm to infer the differential abundance across 5 PCS clusters. The activated immune cells (CD8+ T cell and dendritic cells) infiltrated significantly less in PCScluster5 than other clusters, supporting the negative regulations between stemlike indices and anticancer immunity. High mRNAsi was also found to be associated with up-regulation of immunosuppressive checkpoints, like PDL1. Lastly, we used the Connectivity Map (CMap) resource to screen potential compounds for targeting PRAD stemness, including the top hits of cell cycle inhibitor and FOXM1 inhibitor. Taken together, our study comprehensively evaluated the PRAD stemlike indices based on large cohorts and established a 13-gene based classifier for predicting prognosis or potential strategies for stemness treatment.

Funder

National Natural Science Foundation of China

Guangci Youth excellence program of Ruijin Hospital

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3