An approach for normalization and quality control for NanoString RNA expression data

Author:

Bhattacharya Arjun1,Hamilton Alina M1,Furberg Helena2,Pietzak Eugene2,Purdue Mark P3,Troester Melissa A1,Hoadley Katherine A1,Love Michael I1ORCID

Affiliation:

1. University of North Carolina at Chapel Hill

2. Memorial Sloan Kettering Cancer Center

3. Division of Cancer Epidemiology and Genetics, National Cancer Institute

Abstract

Abstract The NanoString RNA counting assay for formalin-fixed paraffin embedded samples is unique in its sensitivity, technical reproducibility and robustness for analysis of clinical and archival samples. While commercial normalization methods are provided by NanoString, they are not optimal for all settings, particularly when samples exhibit strong technical or biological variation or where housekeeping genes have variable performance across the cohort. Here, we develop and evaluate a more comprehensive normalization procedure for NanoString data with steps for quality control, selection of housekeeping targets, normalization and iterative data visualization and biological validation. The approach was evaluated using a large cohort ($N=\kern0.5em 1649$) from the Carolina Breast Cancer Study, two cohorts of moderate sample size ($N=359$ and$130$) and a small published dataset ($N=12$). The iterative process developed here eliminates technical variation (e.g. from different study phases or sites) more reliably than the three other methods, including NanoString’s commercial package, without diminishing biological variation, especially in long-term longitudinal multiphase or multisite cohorts. We also find that probe sets validated for nCounter, such as the PAM50 gene signature, are impervious to batch issues. This work emphasizes that systematic quality control, normalization and visualization of NanoString nCounter data are an imperative component of study design that influences results in downstream analyses.

Funder

National Institutes of Health

National Cancer Institute

Komen Career Catalyst

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3