Affiliation:
1. Computer Science and Technology with Harbin Institute of Technology, Shenzhen, China
2. School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
Abstract
Abstract
The interactions between proteins and nucleic acid sequences play many important roles in gene expression and some cellular activities. Accurate prediction of the nucleic acid binding residues in proteins will facilitate the research of the protein functions, gene expression, drug design, etc. In this regard, several computational methods have been proposed to predict the nucleic acid binding residues in proteins. However, these methods cannot satisfactorily measure the global interactions among the residues along protein. Furthermore, these methods are suffering cross-prediction problem, new strategies should be explored to solve this problem. In this study, a new computational method called NCBRPred was proposed to predict the nucleic acid binding residues based on the multilabel sequence labeling model. NCBRPred used the bidirectional Gated Recurrent Units (BiGRUs) to capture the global interactions among the residues, and treats this task as a multilabel learning task. Experimental results on three widely used benchmark datasets and an independent dataset showed that NCBRPred achieved higher predictive results with lower cross-prediction, outperforming 10 existing state-of-the-art predictors. The web-server and a stand-alone package of NCBRPred are freely available at http://bliulab.net/NCBRPred. It is anticipated that NCBRPred will become a very useful tool for identifying nucleic acid binding residues.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Beijing Natural Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献