iPiDi-PUL: identifying Piwi-interacting RNA-disease associations based on positive unlabeled learning

Author:

Wei Hang,Xu Yong,Liu Bin

Abstract

Abstract Accumulated researches have revealed that Piwi-interacting RNAs (piRNAs) are regulating the development of germ and stem cells, and they are closely associated with the progression of many diseases. As the number of the detected piRNAs is increasing rapidly, it is important to computationally identify new piRNA-disease associations with low cost and provide candidate piRNA targets for disease treatment. However, it is a challenging problem to learn effective association patterns from the positive piRNA-disease associations and the large amount of unknown piRNA-disease pairs. In this study, we proposed a computational predictor called iPiDi-PUL to identify the piRNA-disease associations. iPiDi-PUL extracted the features of piRNA-disease associations from three biological data sources, including piRNA sequence information, disease semantic terms and the available piRNA-disease association network. Principal component analysis (PCA) was then performed on these features to extract the key features. The training datasets were constructed based on known positive associations and the negative associations selected from the unknown pairs. Various random forest classifiers trained with these different training sets were merged to give the predictive results via an ensemble learning approach. Finally, the web server of iPiDi-PUL was established at http://bliulab.net/iPiDi-PUL to help the researchers to explore the associated diseases for newly discovered piRNAs.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China

Scientific Research Foundation in Shenzhen

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3