SICaRiO: short indel call filtering with boosting

Author:

Bhuyan Md Shariful Islam1ORCID,Pe’er Itsik2,Rahman M Sohel1

Affiliation:

1. Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

2. Department of Computer Science, Fu Foundation School of Engineering, and the Chair at the Center for Health Analytics, Data Science Institute, Columbia University, New York, USA

Abstract

Abstract Despite impressive improvement in the next-generation sequencing technology, reliable detection of indels is still a difficult endeavour. Recognition of true indels is of prime importance in many applications, such as personalized health care, disease genomics and population genetics. Recently, advanced machine learning techniques have been successfully applied to classification problems with large-scale data. In this paper, we present SICaRiO, a gradient boosting classifier for the reliable detection of true indels, trained with the gold-standard dataset from ‘Genome in a Bottle’ (GIAB) consortium. Our filtering scheme significantly improves the performance of each variant calling pipeline used in GIAB and beyond. SICaRiO uses genomic features that can be computed from publicly available resources, i.e. it does not require sequencing pipeline-specific information (e.g. read depth). This study also sheds lights on prior genomic contexts responsible for the erroneous calling of indels made by sequencing pipelines. We have compared prediction difficulty for three categories of indels over different sequencing pipelines. We have also ranked genomic features according to their predictivity in determining false positives.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Case report: Somatic mutations in microtubule dynamics-associated genes in patients with WNT-medulloblastoma tumors;Frontiers in Oncology;2023-01-12

2. Powering Toxicogenomic Studies by Applying Machine Learning to Genomic Sequencing and Variant Detection;Machine Learning and Deep Learning in Computational Toxicology;2023

3. Applications of Predictive Data Mining in Healthcare;International Series in Operations Research & Management Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3