Investigations of sequencing data and sample type on HLA class Ia typing with different computational tools

Author:

Yi Jian1,Chen Longyun1,Xiao Yajie1,Zhao Zhikun1,Su Xiaofan2

Affiliation:

1. Cancer Translational Research Institute, YuceBio Technology Co., Ltd., Shenzhen, China

2. Yucebio Cancer Translational Research Institute and Chief Medical Officer for Yucebio Technology Co

Abstract

Abstract Human leukocyte antigen (HLA) can encode the human major histocompatibility complex (MHC) proteins and play a key role in adaptive and innate immunity. Emerging clinical evidences suggest that the presentation of tumor neoantigens and neoantigen-specific T cell response associated with MHC class I molecules are of key importance to activate the adaptive immune systemin cancer immunotherapy. Therefore, accurate HLA typing is very essential for the clinical application of immunotherapy. In this study, we conducted performance evaluations of 4 widely used HLA typing tools (OptiType, Phlat, Polysolver and seq2hla) for predicting HLA class Ia genes from WES and RNA-seq data of 28 cancer patients. HLA genotyping data using PCR-SBT method was firstly obtained as the golden standard and was subsequently compared with HLA typing data by using NGS techniques. For both WES data and RNA-seq data, OptiType showed the highest accuracy for HLA-Ia typing than the other 3 programs at 2-digit and 4-digit resolution. Additionally, HLA typing accuracy from WES data was higher than from RNA-seq data (99.11% for WES data versus 96.42% for RNA-seq data). The accuracy of HLA-Ia typing by OptiType can reach 100% with the average depth of HLA gene regions >20x. Besides, the accuracy of 2-digit and 4-digit HLA-Ia typing based on control samples was higher than tumor tissues. In conclusion, OptiType by using WES data from control samples with the high average depth (>20x) of HLA gene regions can present a probably superior performance for HLA-Ia typing, enabling its application in cancer immunotherapy.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3