An integrated approach to determine the abundance, mutation rate and phylogeny of the SARS-CoV-2 genome

Author:

Desai Sanket12,Rashmi Sonal1,Rane Aishwarya1,Dharavath Bhasker12,Sawant Aniket12,Dutt Amit123ORCID

Affiliation:

1. Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 410210, India

2. Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India

3. Adjunct Faculty, Institute of Advanced Virology, Kerala State Council for Science, Technology and Environment, Govt. of Kerala, Thonnakkal, Kerala, 695317, India

Abstract

AbstractThe analysis of the SARS-CoV-2 genome datasets has significantly advanced our understanding of the biology and genomic adaptability of the virus. However, the plurality of advanced sequencing datasets—such as short and long reads—presents a formidable computational challenge to uniformly perform quantitative, variant or phylogenetic analysis, thus limiting its application in public health laboratories engaged in studying epidemic outbreaks. We present a computational tool, Infectious Pathogen Detector (IPD), to perform integrated analysis of diverse genomic datasets, with a customized analytical module for the SARS-CoV-2 virus. The IPD pipeline quantitates individual occurrences of 1060 pathogens and performs mutation and phylogenetic analysis from heterogeneous sequencing datasets. Using IPD, we demonstrate a varying burden (5.055–999655.7 fragments per million) of SARS-CoV-2 transcripts across 1500 short- and long-read sequencing SARS-CoV-2 datasets and identify 4634 SARS-CoV-2 variants (~3.05 variants per sample), including 449 novel variants, across the genome with distinct hotspot mutations in the ORF1ab and S genes along with their phylogenetic relationships establishing the utility of IPD in tracing the genome isolates from the genomic data (as accessed on 11 June 2020). The IPD predicts the occurrence and dynamics of variability among infectious pathogens—with a potential for direct utility in the COVID-19 pandemic and beyond to help automate the sequencing-based pathogen analysis and in responding to public health threats, efficaciously. A graphical user interface (GUI)-enabled desktop application is freely available for download for the academic users at http://www.actrec.gov.in/pi-webpages/AmitDutt/IPD/IPD.html and for web-based processing at http://ipd.actrec.gov.in/ipdweb/ to generate an automated report without any prior computational know-how.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference75 articles.

1. Whole-genome sequencing in outbreak analysis;Gilchrist;Clin Microbiol Rev,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3