iCysMod: an integrative database for protein cysteine modifications in eukaryotes

Author:

Wang Panqin1,Zhang Qingfeng2,Li Shihua1,Cheng Ben1,Xue Han1,Wei Zhen1,Shao Tian1,Liu Ze-Xian2ORCID,Cheng Han1ORCID,Wang Zhenlong1

Affiliation:

1. School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China

2. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

Abstract

Abstract As important post-translational modifications, protein cysteine modifications (PCMs) occurring at cysteine thiol group play critical roles in the regulation of various biological processes in eukaryotes. Due to the rapid advancement of high-throughput proteomics technologies, a large number of PCM events have been identified but remain to be curated. Thus, an integrated resource of eukaryotic PCMs will be useful for the research community. In this work, we developed an integrative database for protein cysteine modifications in eukaryotes (iCysMod), which curated and hosted 108 030 PCM events for 85 747 experimentally identified sites on 31 483 proteins from 48 eukaryotes for 8 types of PCMs, including oxidation, S-nitrosylation (-SNO), S-glutathionylation (-SSG), disulfide formation (-SSR), S-sulfhydration (-SSH), S-sulfenylation (-SOH), S-sulfinylation (-SO2H) and S-palmitoylation (-S-palm). Then, browse and search options were provided for accessing the dataset, while various detailed information about the PCM events was well organized for visualization. With human dataset in iCysMod, the sequence features around the cysteine modification sites for each PCM type were analyzed, and the results indicated that various types of PCMs presented distinct sequence recognition preferences. Moreover, different PCMs can crosstalk with each other to synergistically orchestrate specific biological processes, and 37 841 PCM events involved in 119 types of PCM co-occurrences at the same cysteine residues were finally obtained. Taken together, we anticipate that the database of iCysMod would provide a useful resource for eukaryotic PCMs to facilitate related researches, while the online service is freely available at http://icysmod.omicsbio.info.

Funder

National Natural Science Foundation of China

Key program for Department of Science and Technology of Qinghai province

Program for Guangdong Introducing Innovative and Entrepreneurial Teams

Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3