Predicting drug–disease associations through layer attention graph convolutional network

Author:

Yu Zhouxin1,Huang Feng1,Zhao Xiaohan1,Xiao Wenjie2,Zhang Wen1

Affiliation:

1. College of Informatics, Huazhong Agricultural University

2. University of Washington

Abstract

Abstract Background: Determining drug–disease associations is an integral part in the process of drug development. However, the identification of drug–disease associations through wet experiments is costly and inefficient. Hence, the development of efficient and high-accuracy computational methods for predicting drug–disease associations is of great significance. Results: In this paper, we propose a novel computational method named as layer attention graph convolutional network (LAGCN) for the drug–disease association prediction. Specifically, LAGCN first integrates the known drug–disease associations, drug–drug similarities and disease–disease similarities into a heterogeneous network, and applies the graph convolution operation to the network to learn the embeddings of drugs and diseases. Second, LAGCN combines the embeddings from multiple graph convolution layers using an attention mechanism. Third, the unobserved drug–disease associations are scored based on the integrated embeddings. Evaluated by 5-fold cross-validations, LAGCN achieves an area under the precision–recall curve of 0.3168 and an area under the receiver–operating characteristic curve of 0.8750, which are better than the results of existing state-of-the-art prediction methods and baseline methods. The case study shows that LAGCN can discover novel associations that are not curated in our dataset. Conclusion: LAGCN is a useful tool for predicting drug–disease associations. This study reveals that embeddings from different convolution layers can reflect the proximities of different orders, and combining the embeddings by the attention mechanism can improve the prediction performances.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Huazhong Agricultural University Scientific & Technological Self-innovation Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference71 articles.

1. Advancing drug discovery via artificial intelligence;Chan;Trends Pharmacol Sci,2019

2. Biomedical data and computational models for drug repositioning: a comprehensive review;Luo;Brief Bioinform,2020

3. A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks;Zhang;Bioinformatics,2020

4. PROMISCUOUS: a database for network-based drug-repositioning;Eichborn;Nucleic Acids Res,2010

5. Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD);Wiegers;BMC Bioinformatics,2009

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3