Deep learning meets metabolomics: a methodological perspective

Author:

Sen Partho12ORCID,Lamichhane Santosh1,Mathema Vivek B3,McGlinchey Aidan2,Dickens Alex M1,Khoomrung Sakda34,Orešič Matej12ORCID

Affiliation:

1. Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland

2. School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden

3. Metabolomics and Systems Biology, Department of Biochemistry, and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

4. Center for Innovation in Chemistry (PERCH), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

Abstract

Abstract Deep learning (DL), an emerging area of investigation in the fields of machine learning and artificial intelligence, has markedly advanced over the past years. DL techniques are being applied to assist medical professionals and researchers in improving clinical diagnosis, disease prediction and drug discovery. It is expected that DL will help to provide actionable knowledge from a variety of ‘big data’, including metabolomics data. In this review, we discuss the applicability of DL to metabolomics, while presenting and discussing several examples from recent research. We emphasize the use of DL in tackling bottlenecks in metabolomics data acquisition, processing, metabolite identification, as well as in metabolic phenotyping and biomarker discovery. Finally, we discuss how DL is used in genome-scale metabolic modelling and in interpretation of metabolomics data. The DL-based approaches discussed here may assist computational biologists with the integration, prediction and drawing of statistical inference about biological outcomes, based on metabolomics data.

Funder

Novo Nordisk Foundation

Juvenile Diabetes Research Foundation

Spanish Ministry of Education, Culture and Sport

Thailand Research Fund

Academy of Finland postdoctoral

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3