CCLA: an accurate method and web server for cancer cell line authentication using gene expression profiles

Author:

Zhang Qiong,Luo MeiORCID,Liu Chun-Jie,Guo An-YuanORCID

Abstract

Abstract Cancer cell lines (CCLs) as important model systems play critical roles in cancer research. The misidentification and contamination of CCLs are serious problems, leading to unreliable results and waste of resources. Current methods for CCL authentication are mainly based on the CCL-specific genetic polymorphism, whereas no method is available for CCL authentication using gene expression profiles. Here, we developed a novel method and homonymic web server (CCLA, Cancer Cell Line Authentication, http://bioinfo.life.hust.edu.cn/web/CCLA/) to authenticate 1291 human CCLs of 28 tissues using gene expression profiles. CCLA showed an excellent speed advantage and high accuracy for CCL authentication, a top 1 accuracy of 96.58 or 92.15% (top 3 accuracy of 100 or 95.11%) for microarray or RNA-Seq validation data (719 samples, 461 CCLs), respectively. To the best of our knowledge, CCLA is the first approach to authenticate CCLs using gene expression data. Users can freely and conveniently authenticate CCLs using gene expression profiles or NCBI GEO accession on CCLA website.

Funder

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3