QSAR-assisted-MMPA to expand chemical transformation space for lead optimization

Author:

Fu Li12,Yang Zi-Yi2,Yang Zhi-Jiang2,Yin Ming-Zhu3,Lu Ai-Ping4,Chen Xiang5,Liu Shao1,Hou Ting-Jun5,Cao Dong-Sheng134

Affiliation:

1. Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China

2. Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China

3. Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China

4. Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, P. R China

5. Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China

Abstract

Abstract Matched molecular pairs analysis (MMPA) has become a powerful tool for automatically and systematically identifying medicinal chemistry transformations from compound/property datasets. However, accurate determination of matched molecular pair (MMP) transformations largely depend on the size and quality of existing experimental data. Lack of high-quality experimental data heavily hampers the extraction of more effective medicinal chemistry knowledge. Here, we developed a new strategy called quantitative structure–activity relationship (QSAR)-assisted-MMPA to expand the number of chemical transformations and took the logD7.4 property endpoint as an example to demonstrate the reliability of the new method. A reliable logD7.4 consensus prediction model was firstly established, and its applicability domain was strictly assessed. By applying the reliable logD7.4 prediction model to screen two chemical databases, we obtained more high-quality logD7.4 data by defining a strict applicability domain threshold. Then, MMPA was performed on the predicted data and experimental data to derive more chemical rules. To validate the reliability of the chemical rules, we compared the magnitude and directionality of the property changes of the predicted rules with those of the measured rules. Then, we compared the novel chemical rules generated by our proposed approach with the published chemical rules, and found that the magnitude and directionality of the property changes were consistent, indicating that the proposed QSAR-assisted-MMPA approach has the potential to enrich the collection of rule types or even identify completely novel rules. Finally, we found that the number of the MMP rules derived from the experimental data could be amplified by the predicted data, which is helpful for us to analyze the medicinal chemical rules in local chemical environment. In summary, the proposed QSAR-assisted-MMPA approach could be regarded as a very promising strategy to expand the chemical transformation space for lead optimization, especially when no enough experimental data can support MMPA.

Funder

HKBU Strategic Development Fund

Key Research and Development Program of Zhejiang Province

National Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3