A computational platform to identify origins of replication sites in eukaryotes

Author:

Dao Fu-Ying1,Lv Hao1,Zulfiqar Hasan1,Yang Hui1,Su Wei1,Gao Hui1,Ding Hui1,Lin Hao1

Affiliation:

1. Center for Informational Biology at University of Electronic Science and Technology of China

Abstract

Abstract The locations of the initiation of genomic DNA replication are defined as origins of replication sites (ORIs), which regulate the onset of DNA replication and play significant roles in the DNA replication process. The study of ORIs is essential for understanding the cell-division cycle and gene expression regulation. Accurate identification of ORIs will provide important clues for DNA replication research and drug development by developing computational methods. In this paper, the first integrated predictor named iORI-Euk was built to identify ORIs in multiple eukaryotes and multiple cell types. In the predictor, seven eukaryotic (Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana, Pichia pastoris, Schizosaccharomyces pombe and Kluyveromyces lactis) ORI data was collected from public database to construct benchmark datasets. Subsequently, three feature extraction strategies which are k-mer, binary encoding and combination of k-mer and binary were used to formulate DNA sequence samples. We also compared the different classification algorithms’ performance. As a result, the best results were obtained by using support vector machine in 5-fold cross-validation test and independent dataset test. Based on the optimal model, an online web server called iORI-Euk (http://lin-group.cn/server/iORI-Euk/) was established for the novel ORI identification.

Funder

National Nature Scientific Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference48 articles.

1. 60 years ago, Francis Crick changed the logic of biology;Cobb;PLoS Biol,2017

2. Does the semiconservative nature of DNA replication facilitate coherent phenotypic diversity?;Norris;J Bacteriol,2019

3. Mechanisms for initiating cellular DNA replication;Bleichert,2017

4. Isolation and characterisation of a yeast chromosomal replicator;Stinchcomb;Nature,1979

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3