Author:
Tang Jing,Mou Minjie,Wang Yunxia,Luo Yongchao,Zhu Feng
Abstract
Abstract
Metaproteomics suffers from the issues of dimensionality and sparsity. Data reduction methods can maximally identify the relevant subset of significant differential features and reduce data redundancy. Feature selection (FS) methods were applied to obtain the significant differential subset. So far, a variety of feature selection methods have been developed for metaproteomic study. However, due to FS’s performance depended heavily on the data characteristics of a given research, the well-suitable feature selection method must be carefully selected to obtain the reproducible differential proteins. Moreover, it is critical to evaluate the performance of each FS method according to comprehensive criteria, because the single criterion is not sufficient to reflect the overall performance of the FS method. Therefore, we developed an online tool named MetaFS, which provided 13 types of FS methods and conducted the comprehensive evaluation on the complex FS methods using four widely accepted and independent criteria. Furthermore, the function and reliability of MetaFS were systematically tested and validated via two case studies. In sum, MetaFS could be a distinguished tool for discovering the overall well-performed FS method for selecting the potential biomarkers in microbiome studies. The online tool is freely available at https://idrblab.org/metafs/.
Funder
Key R&D Program of Zhejiang Province
Fundamental Research Funds for Central University
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献