Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma

Author:

Cheng Nuojin1,Schulte Ashley J2,Santosa Fadil3,Kim Jong Hyuk4ORCID

Affiliation:

1. School of Mathematics, College of Science and Engineering at the University of Minnesota, Minneapolis, MN, USA

2. Animal Cancer Care and Research Program, Department of Veterinary Clinical Sciences, College of Veterinary Medicine at the University of Minnesota, St Paul, MN, USA

3. Department of Applied Mathematics & Statistics, Whiting School of Engineering at the Johns Hopkins University, Baltimore, MD, USA

4. Department of Veterinary Clinical Sciences, College of Veterinary Medicine at the University of Minnesota, St Paul, MN, USA

Abstract

Abstract Angiosarcomas are soft-tissue sarcomas that form malignant vascular tissues. Angiosarcomas are very rare, and due to their aggressive behavior and high metastatic propensity, they have poor clinical outcomes. Hemangiosarcomas commonly occur in domestic dogs, and share pathological and clinical features with human angiosarcomas. Typical pathognomonic features of this tumor are irregular vascular channels that are filled with blood and are lined by a mixture of malignant and nonmalignant endothelial cells. The current gold standard is the histological diagnosis of angiosarcoma; however, microscopic evaluation may be complicated, particularly when tumor cells are undetectable due to the presence of excessive amounts of nontumor cells or when tissue specimens have insufficient tumor content. In this study, we implemented machine learning applications from next-generation transcriptomic data of canine hemangiosarcoma tumor samples (n = 76) and nonmalignant tissues (n = 10) to evaluate their training performance for diagnostic utility. The 10-fold cross-validation test and multiple feature selection methods were applied. We found that extra trees and random forest learning models were the best classifiers for hemangiosarcoma in our testing datasets. We also identified novel gene signatures using the mutual information and Monte Carlo feature selection method. The extra trees model revealed high classification accuracy for hemangiosarcoma in validation sets. We demonstrate that high-throughput sequencing data of canine hemangiosarcoma are trainable for machine learning applications. Furthermore, our approach enables us to identify novel gene signatures as reliable determinants of hemangiosarcoma, providing significant insights into the development of potential applications for this vascular malignancy.

Funder

National Canine Cancer Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3