A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data

Author:

Qi Ren1,Wu Jin2,Guo Fei1,Xu Lei3,Zou Quan4

Affiliation:

1. College of Intelligence and Computing, Tianjin University

2. School of Management, Shenzhen Polytechnic

3. School of Electronic and Communication Engineering, Shenzhen Polytechnic

4. University of Electronic Science and Technology of China

Abstract

Abstract Single-cell RNA-sequencing (scRNA-seq) data widely exist in bioinformatics. It is crucial to devise a distance metric for scRNA-seq data. Almost all existing clustering methods based on spectral clustering algorithms work in three separate steps: similarity graph construction; continuous labels learning; discretization of the learned labels by k-means clustering. However, this common practice has potential flaws that may lead to severe information loss and degradation of performance. Furthermore, the performance of a kernel method is largely determined by the selected kernel; a self-weighted multiple kernel learning model can help choose the most suitable kernel for scRNA-seq data. To this end, we propose to automatically learn similarity information from data. We present a new clustering method in the form of a multiple kernel combination that can directly discover groupings in scRNA-seq data. The main proposition is that automatically learned similarity information from scRNA-seq data is used to transform the candidate solution into a new solution that better approximates the discrete one. The proposed model can be efficiently solved by the standard support vector machine (SVM) solvers. Experiments on benchmark scRNA-Seq data validate the superior performance of the proposed model. Spectral clustering with multiple kernels is implemented in Matlab, licensed under Massachusetts Institute of Technology (MIT) and freely available from the Github website, https://github.com/Cuteu/SMSC/.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference49 articles.

1. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells;Shalek,2013

2. Machine learning and statistical methods for clustering single-cell RNA-sequencing data;Petegrosso,2020

3. An accurate and robust imputation method scImpute for single-cell RNA-seq data;Li,2018

4. Design and computational analysis of single-cell RNA-sequencing experiments;Bacher,2016

5. Computational and analytical challenges in single-cell transcriptomics;Stegle,2015

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3