Machine learning application for patient stratification and phenotype/genotype investigation in a rare disease

Author:

Spiga Ottavia1,Cicaloni Vittoria2ORCID,Dimitri Giovanna Maria34,Pettini Francesco5,Braconi Daniela1ORCID,Bernini Andrea1,Santucci Annalisa1

Affiliation:

1. Department of Biotechnology, Chemistry and Pharmacy, University of Siena, ITALY

2. Toscana Life Sciences Foundation, Siena, ITALY

3. Department of Computer Science, University of Cambridge, Cambridge, UK

4. Department of Information Engineering and Mathematics, University of Siena, ITALY

5. Department of Medical Biotechnology, University of Siena, ITALY

Abstract

Abstract Alkaptonuria (AKU, OMIM: 203500) is an autosomal recessive disorder caused by mutations in the Homogentisate 1,2-dioxygenase (HGD) gene. A lack of standardized data, information and methodologies to assess disease severity and progression represents a common complication in ultra-rare disorders like AKU. This is the reason why we developed a comprehensive tool, called ApreciseKUre, able to collect AKU patients deriving data, to analyse the complex network among genotypic and phenotypic information and to get new insight in such multi-systemic disease. By taking advantage of the dataset, containing the highest number of AKU patient ever considered, it is possible to apply more sophisticated computational methods (such as machine learning) to achieve a first AKU patient stratification based on phenotypic and genotypic data in a typical precision medicine perspective. Thanks to our sufficiently populated and organized dataset, it is possible, for the first time, to extensively explore the phenotype–genotype relationships unknown so far. This proof of principle study for rare diseases confirms the importance of a dedicated database, allowing data management and analysis and can be used to tailor treatments for every patient in a more effective way.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3