Characterizing Anti-Vaping Posts for Effective Communication on Instagram Using Multimodal Deep Learning

Author:

Xie Zidian1ORCID,Deng Shijian2,Liu Pinxin2,Lou Xubin3,Xu Chenliang2,Li Dongmei1ORCID

Affiliation:

1. Department of Clinical & Translational Research, University of Rochester Medical Center , Rochester, NY , USA

2. Department of Computer Science, University of Rochester , Rochester, NY , USA

3. Goergen Institute for Data Science, University of Rochester , Rochester, NY , USA

Abstract

Abstract Introduction Instagram is a popular social networking platform for sharing photos with a large proportion of youth and young adult users. We aim to identify key features in anti-vaping Instagram image posts associated with high social media user engagement by artificial intelligence. Aims and Methods We collected 8972 anti-vaping Instagram image posts and hand-coded 2200 Instagram images to identify nine image features such as warning signs and person-shown vaping. We utilized a deep-learning model, the OpenAI: contrastive language-image pre-training with ViT-B/32 as the backbone and a 5-fold cross-validation model evaluation, to extract similar features from the Instagram image and further trained logistic regression models for multilabel classification. Latent Dirichlet Allocation model and Valence Aware Dictionary and sEntiment Reasoner were used to extract the topics and sentiment from the captions. Negative binomial regression models were applied to identify features associated with the likes and comments count of posts. Results Several features identified in anti-vaping Instagram image posts were significantly associated with high social media user engagement (likes or comments), such as educational warnings and warning signs. Instagram posts with captions about health risks associated with vaping received significantly more likes or comments than those about help quitting smoking or vaping. Compared to the model based on 2200 hand-coded Instagram image posts, more significant features have been identified from 8972 AI-labeled Instagram image posts. Conclusion Features identified from anti-vaping Instagram image posts will provide a potentially effective way to communicate with the public about the health effects of e-cigarette use. Implications Considering the increasing popularity of social media and the current vaping epidemic, especially among youth and young adults, it becomes necessary to understand e-cigarette-related content on social media. Although pro-vaping messages dominate social media, anti-vaping messages are limited and often have low user engagement. Using advanced deep-learning and statistical models, we identified several features in anti-vaping Instagram image posts significantly associated with high user engagement. Our findings provide a potential approach to effectively communicate with the public about the health risks of vaping to protect public health.

Funder

National Cancer Institute

National Institutes of Health

U.S. Food and Drug Administration

Center for Tobacco Products

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3