A NEW METHOD FOR ESTIMATING INCREASE IN RADIATION DOSE ASSOCIATED WITH IODINATED CONTRAST USE

Author:

Wang Qiang1ORCID,Fu Qiang1,Pang Cong2

Affiliation:

1. Department of Occupational Disease Prevention, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu 213022, China

2. The First People’s Hospital of Changzhou, Changzhou, Jiangsu 213022, China

Abstract

Abstract This work investigates the impact of iodinated contrast medium (ICM) on radiation dose in computed tomography (CT) scans using linear models established through a phantom study. Thermoluminescence dosemeters (TLDs) were calibrated using semi-conductor X-ray dosemeters. An electron density phantom, with a vial containing TLDs and different concentrations of iodinated blood, were scanned at different tube voltages. Irradiated TLD outputs were measured and absorbed dose to iodinated blood calculated. CT numbers (tissue attenuation as measured by Hounsfield units) were plotted against absorbed doses to obtain linear models. Data from 49 real patient scans were used to validate the linear models. At each X-ray energy, CT numbers were linearly correlated with the absorbed doses, that is with the increase of blood iodine concentration, the CT number increased and the absorbed dose increased accordingly. ICM can cause an increase of organ dose; the average dose increases were 31.8 ± 8.9% for thyroid, 37.1 ± 9.2% for cardiac muscle, 77.7 ± 14.0% for cardiac chamber, 7.1 ± 2.3% for breast, 26.1 ± 7.3% for liver, 39.8 ± 11.8% for spleen, 96.3 ± 12.2% for renal cortex and 82.4 ± 11.6% for medulla nephrica. ICM used in enhanced CT scan resulted in increased organ doses. Our models for estimating organ dose based on CT number were established by experiment and verified in clinical use.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3