Branched-chain amino acid interactions in growing pig diets1

Author:

Cemin Henrique S1,Tokach Mike D1,Woodworth Jason C1,Dritz Steve S2ORCID,DeRouchey Joel M1,Goodband Robert D1

Affiliation:

1. Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS

2. Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS

Abstract

Abstract The branched-chain amino acids (BCAA) Leu, Ile, and Val share the first steps of their catabolism due to similarities in their structure. The BCAA are reversibly transaminated in skeletal muscle through the activity of branched-chain aminotransferase and then transported to the liver. They undergo an irreversible decarboxylation catalyzed by the branched-chain α-keto acid dehydrogenase complex. Both enzymes are common to Leu, Ile, and Val and increased enzymatic activity stimulated by an excess of one of them will increase the catabolism of all BCAA, which can result in antagonisms. Leucine and its keto acid are the most potent stimulators of BCAA catabolic enzymes. Moreover, BCAA and large neutral amino acids (LNAA) share common brain transporters. Research has shown that high concentrations of BCAA, especially Leu, can decrease the absorption of LNAA, such as Trp, which is a precursor of serotonin and can have a significant impact in feed intake regulation. Finally, high Leu concentrations have the ability to overstimulate the mTOR signaling pathway, resulting in an inhibitory effect on feed intake. Most of the research conducted to evaluate the impact of BCAA on growth performance of pigs seems to agree that high levels of Leu decrease weight gain, mostly due to a reduction in feed intake. However, some studies, mostly with finishing pigs, observed no evidence for an impact on growth performance even with extremely high levels of Leu. It could be hypothesized that these inconsistencies are driven by the entire dietary amino acid profile as opposed to only considering the level of Leu. Grow-finish diets typically contain high levels of Leu, but the other BCAA are also well above the requirement and could potentially mitigate the negative impact of Leu on BCAA catabolism. Indeed, some studies suggest that when diets contain high levels of Leu, more Ile and Val are needed to optimize growth performance. However, the precise relationship between BCAA and their balance in swine diets is not fully understood. More research is needed to understand and quantify the relationship between LNAA and BCAA.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3