Ancient divergence, a crisis of salt and another of ice shaped the evolution of the west Mediterranean butterfly Euchloe tagis

Author:

Marabuto Eduardo1ORCID,Pina-Martins Francisco1,Rebelo Maria Teresa2,Paulo Octávio S1

Affiliation:

1. Computational Biology and Population Genomics Group, cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal

2. Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Abstract

AbstractThe Mediterranean region is an extremely complex hotspot where, since the Miocene, extensive geological, habitat and climate changes have taken place, alternating between warm and cold periods. These phenomena have taken a toll on the genetic composition of species, and surviving lineages have often adapted locally and diverged to the point of (complete) speciation. To study these phenomena, in this study we used one of the most enigmatic butterflies, the Portuguese dappled white, Euchloe tagis, a west Mediterranean endemic with fragmented, morphologically differentiated populations whose status have long been disputed. Even its affiliations with other Anthocharidini are largely unresolved. We used mitochondrial and nuclear markers under a phylogenetic and phylogeographical framework to evaluate its placement among relatives and population differentiation, reconstructing its evolutionary history. We found that this species had a Miocene origin ~15 Mya and was nearest to Euchloe s.s. and Elphinstonia. Its populations showed high genetic diversity but all coalesced to 5.3 Mya, when European and all but one African population diverged. Our multiple findings concerning the evolution of E. tagis through a changing, narrow habitable area might provide a more general perspective on how species survive within this hotspot of paramount importance.

Funder

Fundação para a Ciência e Tecnologia

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3