Sex-specific effects of developmental temperature on morphology, growth and survival of offspring in a lizard with temperature-dependent sex determination

Author:

Steele Ariel L1ORCID,Warner Daniel A1ORCID

Affiliation:

1. Department of Biological Sciences, Auburn University, Auburn, AL, USA

Abstract

AbstractThe developmental environment plays a pivotal role in shaping fitness-relevant phenotypes of all organisms. Phenotypes are highly labile during embryogenesis, and environmental factors experienced early in development can have profound effects on fitness-relevant traits throughout life. Many reptiles exhibit temperature-dependent sex determination (TSD), whereby temperature during embryonic development permanently determines offspring sex. The leading hypothesis for the adaptive significance of TSD posits that egg incubation temperature differentially affects the fitness of males vs. females so that each sex is produced at its optimal temperature. The goal of this research is to address this hypothesis by quantifying the sex-specific effects of incubation temperature on phenotypes and survival in a lizard (Agama picticauda) with TSD. By incubating eggs under constant and fluctuating temperatures, we demonstrated that incubation temperature affects fitness-relevant phenotypes in A. picticauda; but males and females had similar reaction norms. However, females produced from female-biased incubation temperatures had greater survival than those from male-biased temperatures, and male survival was lowest for individuals produced from a female-biased temperature. In addition, eggs incubated at male-biased temperatures hatched earlier than those incubated at female-biased temperatures, which may have sex-specific consequences later in life as predicted by models for the adaptive significance of TSD.

Funder

Auburn University

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3