Phenotypic divergence, convergence and evolution of Caucasian rock lizards (Darevskia)

Author:

Tarkhnishvili David1,Gabelaia Mariam1,Adriaens Dominique2

Affiliation:

1. Ilia State University, Institute of Ecology, School of Natural Sciences and Engineering, Kakutsa Cholokashvili Ave 3/5, Tbilisi, Georgia

2. Ghent University, Evolutionary Morphology of Vertebrates, K. L. Ledeganckstraat 35, Gent, Belgium

Abstract

AbstractPhenotypic evolution can cause either divergent or convergent phenotypic patterns. Even adaptation to the same environment may result in divergence of some elements of phenotype, whereas for other morphological traits it could cause phenotypic convergence. We hypothesize that at least some phenotypic characters diverge monotonically, hence they evolve irreversibly even in very closely related species, and this happens in spite of multiple convergent adaptive patterns. We studied the evolution of phenotype in 13 closely related Caucasian rock lizards (Darevskia), whose phylogenetic relationships are well known. We used head shape and the outlines of three important scales, using geometric morphometrics. We studied the association of the overall head shape, individual principal components of head shape and scale outlines with four predictors: phylogeny, habitat, sex and size. The overall head shape was not correlated with any of these predictors, whereas some principal components were correlated with habitat or phylogeny. Habitat type explained the highest fraction of variation in head shape and anal scale area. The relatedness inferred from the components of phenotype not correlated with habitat was congruent with the phylogenetic tree inferred from molecular data. Although adaptation to local environments may obscure the phylogenetic signal present in phenotype, there are components of phenotype whose evolution is irreversible.

Funder

Shota Rustaveli National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3