Population genomics of four co-distributed frog species in a barrier island system

Author:

Nava Martinez Maria1,Amador Luis1,Wiley Daniele L F1,McDaniels Chris X1,Barrow Lisa N1ORCID

Affiliation:

1. Museum of Southwestern Biology and Department of Biology, MSC03-2020, 1 University of New Mexico , Albuquerque, NM 87131-0001 , United States

Abstract

Abstract In nature, small populations are often of concern because of limited genetic diversity, which underlies adaptive potential in the face of environmental change. Assessing patterns of genetic variation within co-distributed species sampled across varied landscapes can therefore illuminate their capacity to persist over time. We sequenced new genome-wide sequence data (double-digest restriction site-associated DNA sequencing) for four frog species (Anaxyrus terrestris, Hyla cinerea, Hyla squirella, and Rana sphenocephala) sampled from two barrier islands and the adjacent mainland of northern Florida. We calculated genomic diversity metrics and analysed spatial patterns of genomic variation for each species. We found higher genomic diversity within mainland individuals compared to island individuals for all species, suggesting a consistent effect of small island area on diversity across species. Three species (all but A. terrestris) showed significant signatures of isolation by distance, and some clustering analyses indicated separation of island and mainland individuals within species. We identified subtle differences in the strength of these patterns among species, with the strongest genetic differentiation observed in R. sphenocephala. Finally, we found evidence of recent migration between island and mainland populations for all species, which likely explains the limited genetic structure observed and contributes to the persistence of these small populations.

Funder

American Philosophical Society

American Museum of Natural History

U.S. National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3