Increased individual homozygosity is correlated with low fitness in a fragmented lizard population

Author:

Pérez-Tris Javier1,Llanos-Garrido Alejandro1,Bloor Paul2,Carbonell Roberto3,Tellería José Luis1,Santos Tomás1,Díaz José A1

Affiliation:

1. Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain

2. Instituto de Genética, Universidad Nacional de Colombia, Bogotá D.C., Colombia

3. Consejería de Medio Ambiente, Servicio Espacios Naturales, Valladolid, Spain

Abstract

AbstractIsolation owing to anthropogenic habitat fragmentation is expected to increase the homozygosity of individuals, which might reduce their fitness as a result of inbreeding depression. Using samples from a fragmented population of the lizard Psammodromus algirus, for which we had data about two correlates of fitness, we genotyped individuals for six microsatellite loci that correctly capture genome-wide individual homozygosity of these lizards (as validated with an independent sample of lizards genotyped for both these microsatellites and > 70 000 single nucleotide polymorphisms). Our data revealed genetic structure at a very small geographical scale, which was compatible with restricted gene flow among populations disconnected in a matrix of inhospitable habitat. Lizards from the same fragment were genetically more related to one another than expected by chance, and individual homozygosity was greater in small than in large fragments. Within fragments, individual homozygosity was negatively associated with adult body size and clutch mass, revealing a link among reduced gene flow, increased homozygosity and lowered fitness that might reduce population viability deterministically. Our results contribute to mounting evidence of the impact of the loss of genetic diversity on fragmented wild populations.

Funder

Spanish Ministry of Science and Technology

UCM-CAM

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3