Diversification in trophic morphology and a mating signal are coupled in the early stages of sympatric divergence in crossbills

Author:

Porter Cody K12ORCID,Smith Julie W3

Affiliation:

1. Department of Zoology and Physiology, University of Wyoming, Laramie, WY,USA

2. Program in Ecology, University of Wyoming, Laramie, WY, USA

3. Department of Biology, Pacific Lutheran University, Tacoma, WA, USA

Abstract

Abstract Understanding the mechanisms generating diversity in mating signals is critical to understanding the process of speciation. One mechanism of mating signal diversification occurs when phenotypes that experience divergent ecological selection also affect the production of mating signals, resulting in a coupling between ecological diversification and mating signal diversification. Here, we present evidence that rapid diversification in bill size has resulted in the diversification of some components of song structure in a young adaptive radiation of seed-eating finches (red crossbill, Loxia curvirostra complex). Specifically, we find that larger-billed ecotypes sing songs with lower minimum frequencies, lower syllable repetition rates and greater vocal deviation (i.e. lower performance) than smaller-billed ecotypes for pure tonal syllables. In contrast, bill size was not correlated with maximum frequency or frequency bandwidth, and we found no relationship between bill size and any song parameters in buzzy syllables. Furthermore, we found no evidence for a relationship between the degree of bill size divergence and the potential for song discrimination between sympatric ecotypes. Because bill size is correlated with some features of pure tonal syllables (which appear to be most important for courtship in crossbills) in crossbill song, our results suggest that there was an early-evolving link between ecological and mating signal diversification that may have influenced the rapid evolution of reproductive isolation between sympatric ecotypes.

Funder

M. J. Murdock Charitable Trust

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3