Water turbidity affects melanin-based coloration in the gudgeon: a reciprocal transplant experiment

Author:

Côte Jessica1ORCID,Pilisi Camille1,Morisseau Océane1,Veyssière Charlotte1,Perrault Annie2,Jean Séverine2,Blanchet Simon3,Jacquin Lisa1

Affiliation:

1. Laboratoire Evolution et Diversité Biologique EDB, Université de Toulouse; Toulouse, France

2. Laboratoire EcoLab, CNRS; INPT; UPS; ENSAT, Auzeville-Tolosane, France

3. Station d’Écologie Théorique et Expérimentale SETE; Moulis, France

Abstract

Abstract Human activities cause rapid eutrophication and increased water turbidity in aquatic ecosystems, but their effects on fish communication and colour signals remain of debate. In particular, melanin-based coloration in fish has been understudied, because it was believed to be less costly to display than carotenoid-based colours. Here, we measured the phenotypic divergence of melanin-based coloration in 17 populations of gudgeon (Gobio occitaniae) along a turbidity gradient. We also tested the short-term plasticity of coloration using a reciprocal transplant experiment. We found strong variability in melanin-based coloration along the turbidity gradient: interpopulation divergence in coloration was higher than predicted by genetic drift, and fish were paler with increasing levels of turbidity. Finally, a reciprocal transplant experiment revealed that fish transplanted into more turbid habitats expressed a paler melanin-based coloration, suggesting that melanin-based coloration was highly plastic in the short term. Overall, our results suggest that eutrophication in human-altered rivers can rapidly alter melanin-based coloration, with potential consequences for fish visual communication and sexual selection.

Funder

Agence de l’Eau Adour-Garonne

National ECODYN programme

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3