Evolutionary divergence of body size and wing and leg structure in relation to foraging mode in Darwin’s Galapagos finches

Author:

Lindhe Norberg Ulla M1,Norberg R Åke1

Affiliation:

1. Department of Biological and Environmental Sciences, Zoology, University of Gothenburg , Sweden

Abstract

Abstract The wings, legs, and tail in Darwin’s finches show many clear adaptations to different types of locomotion used during foraging. We use size scaling to analyse how various characters vary with body mass to clarify dimensional relationships. The selective advantage of a character is judged in terms of energy savings. The wing aspect ratio (4.6–4.9) is very low, so the energy costs for flight are high. Low body mass, low wing loading, and short arm wings in the warbler finch, small tree finch, and small ground finch promote agility and manoeuvrability among vegetation, along with short wings in the warbler finch. Evolution towards a shorter arm wing seems to be favoured in the smaller finch species. Long legs, long toes, and long curved claws are adaptations for climbing/clinging locomotion without tail support (woodpecker finch, small and large tree finches, cactus finch but having short legs). Selection for longer legs seems to act towards a lengthening of the tarsometatarsus. The climbing technique in the woodpecker finch is described. We discuss how the diversification in the beaks relates to the locomotion organs.

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

Reference44 articles.

1. Body support, scaling, and allometry;Alexander,1985

2. Morphological differentiation and adaptation in the Galapagos finches;Bowman;University of California Publications in Zoology,1961

3. The terroir of the finches: how spatial and temporal variation shapes phenotypic traits in Darwin’s finches;Carrión;Ecology and Evolution,2022

4. Evidence from claw geometry indicating arboreal habits of Archaeopteryx;Feduccia;Science,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3