Predicting insect body masses based on linear measurements: a phylogenetic case study on geometrid moths

Author:

Araújo Foerster Stênio Ítalo1ORCID,Javoiš Juhan1,Holm Sille12ORCID,Tammaru Toomas1

Affiliation:

1. Department of Zoology, University of Tartu , Juhan Liivi 2, 50409, Tartu , Estonia

2. Department of Environmental and Biological Sciences, University of Eastern Finland , PO Box 111, 80101 Joensuu , Finland

Abstract

Abstract Dry body mass (DBM) is perhaps the most biologically informative variable describing body size in invertebrates. Unfortunately, obtaining species-specific indices of DBM is problematic because body mass inevitably changes during the course of the life of an individual. Here, we present a phylogenetically informed analysis of allometric relationships between body size and various linear measurements in the moth family Geometridae, which relies on DBM recorded at a fixed time point of adult life. We demonstrate that all measurements of wing size predict DBM with reasonable accuracy, with the distance between the most distal ends of the two forewings in traditionally mounted moths showing the best performance. Abdomen width provides independent morphometric information and can be used as a proxy of body plan, i.e. a measurement of shape that is not dependent on size. Incorporating abdomen width into the regression models considerably increases their predictive ability. We also show that the allometric relationships are reasonably consistent between the two sexes, between monophyletic clades of Geometridae and between the two geographical regions involved in the study (northern Europe and equatorial Africa). The derived equations thus appear to be general enough to be applied in various studies, from comparative phylogenetic analyses to applied projects monitoring insect biomass.

Funder

Estonian Research Council

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3