Climate change outpaces adaptive potential via hybridization in nesting female Saltmarsh and Nelson’s Sparrows

Author:

Maxwell Logan M1,Walsh Jennifer2ORCID,Olsen Brian J3,Kovach Adrienne I1ORCID

Affiliation:

1. Department of Natural Resources and the Environment, University of New Hampshire , Durham, New Hampshire , USA

2. Fuller Evolutionary Biology Program, Cornell Lab of Ornithology , Ithaca, New York , USA

3. School of Biology and Ecology, University of Maine, Orono , Maine , USA

Abstract

Abstract Hybridization and introgression can promote adaptive potential and evolutionary resilience in response to increased pressures of climate change; they can also disrupt local adaptation and lead to outbreeding depression. We investigated female fitness consequences of hybridization in two sister species that are endemic to a threatened tidal marsh ecosystem: Saltmarsh (Ammospiza caudacutus) and Nelson’s (Ammospiza nelsoni) sparrows. We found increasing nest flooding rates due to rising sea levels are outpacing potential adaptive benefits of hybridization due to very low overall nesting success in both the Nelson’s and Saltmarsh sparrows. In the center of the hybrid zone across two years, we determined the success of 201 nests of 104 pure and admixed Saltmarsh and Nelson’s Sparrow females, genotyped using a panel of single nucleotide polymorphisms (SNPs) from double digest restriction-site associated DNA (ddRAD) sequencing. We evaluated 5 metrics of female fitness and modeled nesting success in relation to genotypic, environmental, and nesting characteristics. We found differential fitness among Saltmarsh, Nelson’s, and hybrid females, such that birds with predominantly Saltmarsh Sparrow alleles had higher reproductive success than birds with predominantly Nelson’s Sparrows alleles, and hybrids were intermediate. Fledging success increased with two known tidal marsh nesting adaptations: nest height and nesting synchrony with tidal cycles. We found a positive relationship between hybrid index and fitness in daily nest survival in 2016, but not in 2017, likely due to differing levels of precipitation and nest flooding between years. The strongest and most consistent predictors of daily nest survival were nesting synchrony with lunar tidal flooding cycles and daily maximum tide height. Fitness patterns suggest that there may be an adaptive benefit of interspecific geneflow for the Nelson’s Sparrow at the detriment of the Saltmarsh Sparrow; however, flooding rates are so high in many years they mask any fitness differences between the species, and all females had poor nesting success, regardless of genetic makeup.

Funder

National Institute of Food and Agriculture

Garden Club of America’s Frances M. Peacock Scholarship

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3