Migration distance is a fundamental axis of the slow-fast continuum of life history in boreal birds

Author:

Winger Benjamin M1,Pegan Teresa M1

Affiliation:

1. Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA

Abstract

Abstract Seasonal migration is intrinsically connected to the balance of survival and reproduction, but whether migratory behavior influences species’ position on the slow-fast continuum of life history is poorly understood. We found that boreal-breeding birds that migrate long distances exhibit higher annual adult survival and lower annual reproductive investment relative to co-distributed boreal species that migrate shorter distances to winter closer to their breeding grounds. Our study uses “vital rates” data on reproductive output and survivorship compiled from the literature for a species assemblage of 45 species of mostly passerine birds. These species breed sympatrically in North American boreal forests but migrate to a diversity of environments for the northern winter. After controlling for body size and phylogeny, migration distance and apparent annual adult survival are positively related across species. Both migration distance and survival are positively correlated with wintering in environments that are warmer, wetter, and greener. At the same time, longer migrations are associated with reduced time spent on the breeding grounds, lower clutch sizes, and lower fecundity (clutch size × maximum number of broods per year). Although seasonal migration is often associated with high mortality, our results suggest that long-distance migration imposes selection pressures that both confer and demand high adult survival rates. That is, owing to the reproductive cost of long-distance migration, this strategy can only persist if balanced by high adult survival. Our study supports the idea that migration evolves to promote survival of species breeding in seasonal environments. In boreal birds, the evolution of the longest migrations yields the highest survival, but at an inherent cost to annual fecundity. Our results therefore reveal migratory distance as a fundamental axis of the slow-fast continuum that predicts, and is inextricable from, the balance of survival and reproduction.

Funder

University of Michigan

National Science Foundation Graduate Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3