Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study

Author:

Yang Bin12ORCID,Chen Mingming1,Zhan Chengfang1,Liu Kexin1,Cheng Yanhao1,Xie Ting1,Zhu Peiwen1,He Ying1,Zeng Peng1,Tang Haijuan1,Tsugama Daisuke3,Chen Sunlu1,Zhang Hongsheng1,Cheng Jinping1ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University , Nanjing 210095 , China

2. Guangzhou Key Laboratory for Research and Development of Crop Germplasm resources, Zhongkai University of Agriculture and Engineering , Guangzhou 510225 , China

3. Asian Natural Environmental Science Center (ANESC), The University of Tokyo , 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002 , Japan

Abstract

Abstract Seed germination plays a pivotal role in the plant life cycle, and its precise regulatory mechanisms are not clear. In this study, 19 quantitative trait loci (QTLs) associated with rice seed germination were identified through genome-wide association studies (GWAS) of the following traits in 2016 and 2017: germination rate (GR) at 3, 5, and 7 days after imbibition (DAI) and germination index (GI). Two major stable QTLs, qSG4 and qSG11.1, were found to be associated with GR and GI over 2 continuous years. Furthermore, OsPK5, encoding a pyruvate kinase, was shown to be a crucial regulator of seed germination in rice, and might be a causal gene of the key QTL qSG11.1, on chromosome 11. Natural variation in OsPK5 function altered the activity of pyruvate kinase. The disruption of OsPK5 function resulted in slow germination and seedling growth during seed germination, blocked glycolytic metabolism, caused glucose accumulation, decreased energy levels, and affected the GA/ABA balance. Taken together, our results provide novel insights into the roles of OsPK5 in seed germination, and facilitate its application in rice breeding to improve seed vigour.

Funder

Natural Science Foundation of Jiangsu Province

Hainan Yazhou Bay Seed Lab

National Natural Science Foundation of China

Guangzhou Key Laboratory for Research

Development of Crop Germplasm Resources

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3