A weak allele of OsNRAMP5 confers moderate cadmium uptake while avoiding manganese deficiency in rice

Author:

Kuramata Masato1,Abe Tadashi1,Tanikawa Hachidai1,Sugimoto Kazuhiko2,Ishikawa Satoru1ORCID

Affiliation:

1. Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO) , Tsukuba , Japan

2. Institute of Crop Sciences, NARO , Tsukuba , Japan

Abstract

Abstract Decreasing cadmium (Cd) concentrations in rice grains can effectively reduce potential risks to human health because rice is the major contributor to Cd intake in many diets. Among several genes involved in rice Cd accumulation, the loss of function of OsNRAMP5 is known to be effective in reducing grain concentration by inhibiting root uptake. However, disruption of this gene simultaneously decreases manganese (Mn) uptake because OsNRAMP5 is a major Mn transporter. With the aim of improving Mn uptake in OsNRAMP5 mutants while still restricting the grain Cd concentration below the upper limit of international standards, we identified a novel OsNRAMP5 allele encoding a protein in which glutamine (Q) at position 337 was replaced by lysine (K). The mutant carrying the OsNRAMP5-Q337K allele showed intermediate Cd and Mn accumulation between that of the wild-type and OsNRAMP5-knockout lines, and exhibited more resistance to Mn deficiency than the knockout lines. Different amino acid substitutions at position Q337 significantly affected the Cd and Mn transport activity in yeast cells, indicating that it is one of the crucial sites for OsNRAMP5 function. Our results suggest that the OsNRAMP5-Q337K allele might be useful for reducing grain Cd concentrations without causing severe Mn deficiency in rice cultivars through DNA marker-assisted breeding.

Funder

Bio-oriented Technology Research Advancement Institution

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3