Genome-wide H3K9 acetylation level increases with age-dependent senescence of flag leaf in rice

Author:

Zhang Yu1ORCID,Li Yanyun1,Zhang Yuanyuan1,Zhang Zeyu2,Zhang Deyu1,Wang Xiaonan1,Lai Binfan1,Huang Dandan1,Gu Lianfeng2,Xie Yakun1,Miao Ying1ORCID

Affiliation:

1. Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , China

2. Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University , Fuzhou , China

Abstract

Abstract Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is as yet unclear. Here, we analysed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. During flag leaf aging, we observed 1249 up-regulated differentially expressed genes (DEGs) and 996 down-regulated DEGs, showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac. We produced a landscape of H3K9 acetylation-modified gene expression targets that include known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis-related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac, and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3