The importance of Arabidopsis PHOSPHOLIPID N-METHYLTRANSFERASE in glycerolipid metabolism and plant growth

Author:

Tan Yue-Rong123,Nakamura Yuki1245ORCID

Affiliation:

1. Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan

2. Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan

3. Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan

4. Biotechnology Center, National Chung Hsing University, Taichung, Taiwan

5. RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan

Abstract

Abstract Phosphatidylcholine (PC) is a major class of phospholipids that are essential for post-embryonic growth in plants. In Arabidopsis, three copies of the phospho-base N-methyltransferase, PMT1, PMT2, and PMT3, are known to account for PC biosynthesis because the triple-knockout mutant is devoid of biosynthesis and shows lethality in post-embryonic but not embryonic growth. Arabidopsis also contains a distinct phospholipid N-methyltransferase (PLMT) that is homologous with yeast and animal PLMT that methylates phospholipids to produce PC. However, the knockout mutant of PLMT does not show morphological phenotypes or decreased PC content, so the role of PLMT remains unclear. Here, we show that PLMT is ubiquitously expressed in different organs and localized at the endoplasmic reticulum, where PC is produced. Overexpression of PLMT in planta increased the content of phospholipids including PC and affected vegetative but not reproductive growth. Although silique lengths were shorter, pollen remained viable and mature seeds were produced. Intriguingly, seed triacylglycerol content was increased with altered fatty acid composition. We conclude that PLMT might be a functional enzyme in PC biosynthesis and play an organ-specific role in developing seeds, where rapid accumulation of triacylglycerol dominates the entire glycerolipid metabolic flux.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3