Phytomelatonin as a central molecule in plant disease resistance

Author:

Zeng Hongqiu1,Bai Yujing1,Wei Yunxie1,Reiter Russel J2,Shi Haitao1ORCID

Affiliation:

1. Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University , Haikou, Hainan province, 570228 , China

2. Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine , San Antonio, TX , USA

Abstract

Abstract Melatonin is an essential phytohormone in the regulation of many plant processes, including during plant development and in response to stress. Pathogen infections cause serious damage to plants and reduce agricultural production. Recent studies indicate that melatonin plays important roles in alleviating bacterial, fungal, and viral diseases in plants and post-harvest fruits. Herein, we summarize information related to the effects of melatonin on plant disease resistance. Melatonin, reactive oxygen species, and reactive nitrogen species form a complex loop in plant–pathogen interaction to regulate plant disease resistance. Moreover, crosstalk of melatonin with other phytohormones including salicylic acid, jasmonic acid, auxin, and abscisic acid further activates plant defense genes. Melatonin plays an important role not only in plant immunity but also in alleviating pathogenicity. We also summarize the known processes by which melatonin mediates pathogenicity via negatively regulating the expression levels of genes related to cell viability as well as virulence-related genes. The multiple mechanisms underlying melatonin influences on both plant immunity and pathogenicity support the recognition of the essential nature of melatonin in plant–pathogen interactions, highlighting phytomelatonin as a critical molecule in plant immune responses.

Funder

Hainan Province Science and Technology Special

Hainan Provincial Key Research and Development Project of China

National Natural Science Foundation of China

Programme of Introducing Talents of Discipline to Universities

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3