Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering

Author:

Rong Chenyu1,Liu Yuexin1,Chang Zhongyuan1,Liu Ziyu1,Ding Yanfeng123,Ding Chengqiang123ORCID

Affiliation:

1. College of Agriculture, Nanjing Agricultural University , Nanjing 210095 , People’s Republic of China

2. Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture , Nanjing 210095 , People’s Republic of China

3. Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry , Nanjing 210095 , People’s Republic of China

Abstract

Abstract Cytokinins play key roles in plant growth and development, and hence their biosynthesis and degradation have been extensively studied. Cytokinin oxidase/dehydrogenases (CKXs) are a group of enzymes that regulate oxidative cleavage to maintain cytokinin homeostasis. In rice, 11 CKX genes have been identified to date; however, most of their functions remain unknown. In this study, we comprehensively examined the expression patterns and functions of the CKXs in rice by using CRISPR/Cas9 technology to construct mutants of all 11 genes. The results revealed that the ckx single-mutants and higher-order ckx4 ckx9 mutant lines showed functional overlaps and sub-functionalization. Notably, the ckx1 ckx2 and ckx4 ckx9 double-mutants displayed contrasting phenotypic changes in tiller number and panicle size compared to the wild-type. In addition, we identified several genes with significantly altered expression in both the ckx4 and ckx9 single-mutant and double-mutant plants. Many of the differentially expressed genes were found to be associated with auxin and cytokinin pathways, and cytokinins in the ckx4 ckx9 double-mutant were increased compared to the wild-type. Taken together, our findings provide new insights into the functions of CKX genes in rice growth and may provide the foundations for future studies aimed at improving rice yield.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3