Heteromeric interactions of ripening-related ethylene receptors in tomato fruit

Author:

Kamiyoshihara Yusuke12ORCID,Achiha Yuki2,Ishikawa Shin1,Mizuno Shinji12,Mori Hitoshi3ORCID,Tateishi Akira12ORCID,Huber Donald J4ORCID,Klee Harry J4ORCID

Affiliation:

1. College of Bioresource Sciences, Nihon University , Kameino, Fujisawa, Kanagawa , Japan

2. Graduate School of Bioresource Sciences, Nihon University , Kameino, Fujisawa, Kanagawa , Japan

3. Graduate School of Bioagricultural Sciences, Nagoya University , Chikusa-ku, Nagoya, Aichi , Japan

4. Horticultural Sciences, University of Florida , Gainesville, FL , USA

Abstract

Abstract Ripening of climacteric fruits is initiated when the gaseous plant hormone ethylene is perceived by the cell. Ethylene binding to membrane-associated ethylene receptors (ETRs) triggers a series of biochemical events through multiple components, resulting in the induction of numerous ripening-related genes. In tomato (Solanum lycopersicum L.), there are seven members of the ETR family, which each contribute to the regulation of fruit ripening. However, the relative contribution of each individual receptor to ethylene signaling remains unknown. Here, we demonstrated the formation of heteromeric receptor complexes across the two ETR subfamilies in tomato fruit. Immunoprecipitation of subfamily II SlETR4 resulted in co-purification of subfamily I (SlETR1, SlETR2, and SlETR3), but not subfamily II members (SlETR5, SlETR6, and SlETR7). Such biased interactions were verified in yeast two-hybrid assays, and in transgenic Arabidopsis plants, in which heterologous SlETR4 interacts with subfamily I ETRs. Our analysis also revealed that the receptor complexes engage the Raf-like protein kinases SlCTR1 and SlCTR3, which are potential regulators of signaling. Here, we suggest that tomato receptor members form heteromeric complexes to fine-tune signal output to the downstream pathway, which is similar to that of the Arabidopsis system but appears to be partially diverged.

Funder

Nihon University College of Bioresource Sciences

AgroFresh, Inc.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3