Reactive extraction of propionic acid using trioctylamine in 1–decanol by response surface methodology optimization technique

Author:

Inyang Victoria M1,Lokhat David1

Affiliation:

1. Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King Gerorge V Avenue, Durban 4041, South Africa

Abstract

Abstract Reactive extraction, a novel technique, was experimentally investigated for the removal of propionic acid, which is usually present in low concentrations in aqueous solutions. The experiments were conducted according to statistical design to develop an appropriate regression model. This was aimed at analyzing and optimizing the process variables and extraction efficiency for propionic acid reactive extraction from dilute aqueous streams using trioctylamine as extractant and 1-decanol as organic diluent. Response surface methodology in combination with Box–Behnken design involving 17 experimental runs was utilized for the propionic acid reactive extraction in this study. Three independent process variables were chosen as temperature (T), initial propionic acid concentration (CPAO) in the aqueous phase and trioctylamine composition (CTOA) in the organic phase. The statistical design analysis demonstrated that the propionic acid concentration and TOA composition had a significant effect while temperature had an insignificant effect on the response value as well as an interactive and quadratic effect on the response. The optimum conditions for propionic acid extraction were established as T  =  300.752 K, CTOA  =  18.252 %v/v, CPAO  =  0.408 kmol/m3. Under these optimum conditions, the propionic acid experimental extraction yield was 89.788 %, which was in close conformity with the predicted yield value of 91.939 %.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3