Bivariate reliability analysis for floating wind turbines

Author:

Gaidai Oleg1ORCID,Yakimov Vladimir2,Wang Fang1,Sun Jiayao3,Wang Kelin1

Affiliation:

1. Shanghai Ocean University College of Engineering Science and Technology, , No.999, Huchenghuan Rd, Shanghai, China

2. Central Marine Research and Design Institute , No. 6, Kavalergardskaya st., Saint Petersburg, Russia

3. Jiangsu University of Science and Technology , No. 2, Mengxilu st., Zhenjiang, China

Abstract

Abstract Wind turbines are designed to withstand extreme wind- and wave-induced loads, hence a reliability study is vital. This study presents a bivariate reliability approach, suitable for accurate assessment of critical forces and moments, occurring within the wind turbine’s critical mechanical parts, such as the drivetrain. A ecently developed bivariate modified Weibull method has been utilized in this study. Multivariate statistical analysis is more appropriate than a univariate one, as it accounts for cross-correlations between different system components. This study employed a bivariate modified Weibull method to estimate extreme operational loads acting on a 10-mega watt (MW) semi-submersible type floating wind turbine (FWT). Longitudinal, bending, twisting, and cyclic loads being among typical load types that FWTs and associated parts are susceptible to. Furthermore, environmental loads acting on an operating FWT being impacted by incoming wind’s stochastic behavior in terms of wind speed, direction, shear, vorticity, necessitates accurate nonlinear extreme load analysis for FWT critical parts such as the drivetrain. Appropriate numerical methods were used in this study to model dynamic, structural, aerodynamic, and control aspects of the FWT system. Bending moments acting on the FWT drivetrain have been obtained from SIMPACK (Multibody Simulation Method), given realistic in-situ environmental conditions. For a 5-year return period of interest, a bivariate modified Weibull method offered robust assessment of FWT’s coupled drivetrain’s bending moments.

Publisher

Oxford University Press (OUP)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3