Optimizing building surface retro-reflectivity to reduce energy load and CO2 emissions of an enclosed teaching building

Author:

Qi Liyan1,Wang Jing12ORCID

Affiliation:

1. Qingdao University of Technology Innovation Institute for Sustainable Maritime Architecture Research and Technology, , 11 Fushun Road, Shibei District, Qingdao City, Shandong Province Qingdao 266033, China

2. the University of Kitakyushu Faculty of Environmental Engineering, , Fukuoka 808-0135, Japan

Abstract

Abstract Building surface reflectivity determines the amount of reflected solar radiation, which indirectly affects the cooling and heating load of a building. Therefore, optimizing building surface retro-reflectivity is an effective method to reduce energy load and CO2 emissions of buildings. To analyse the optimization potential of building surface retro-reflectivity, the effect of surface reflectivity on daily, monthly and yearly energy load, as well as CO2 emissions of an educational building were simulated based on the Energyplus software. The numerical results showed that for daily energy load in four typical seasons, there was a positive correlation between the daily energy load and building surface reflectivities in January, April and October and a negative correlation in July. For monthly energy load, the building cooling and heating loads were the highest in January and August, respectively. For annual energy load, the higher the reflectivity, the lower the cooling load and the higher the heating load. When the building surface reflectivity was 0.7, the annual energy load was the least, with a value of 148.23 kWh/m2. In addition, the CO2 emission was also the lowest, with a value of 24.79 kg/m2. According to the relation between building surface reflectivities and retro-reflectivities, the optimal retro-reflectivity was 0.47.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3