Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions

Author:

Abdelal Qasem1

Affiliation:

1. Department of Civil and Environmental Engineering, School of Natural Resources Management, German Jordanian University, Amman 11180, Jordan

Abstract

Abstract This work addresses the potential impact on water quality and quantifies the benefit of the low carbon power source of floating solar panels in evaporation reduction when using them on an open water body, such as an agricultural irrigation pond in semi-arid regions. By utilizing agricultural ponds for low carbon energy conversion, and saving precious water through evaporation reduction, the highly vulnerable agricultural sector will be empowered. A pilot size setup is prepared, key water quality parameters were monitored and evaporation quantities in a PV-covered pond are compared to those from an adjacent open water pond used as a control. Several inclination angles for the panels were tested. Results showed no adverse impact on the water quality; on the contrary, there is evidence of improvement particularly in nitrate and chlorophyll concentrations. Moreover, a reduction of ~60% in evaporation was observed; power generation from the floating panels, on the other hand, was statistically similar to that from ground-mounted panels.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3