Intelligent energy optimization system development and validation for German building types

Author:

Gökçe H Ufuk1,Gökçe K Umut1

Affiliation:

1. EOS Sustainable Energy Solutions GmbH, R&D Department, EnergieEffizienzZentrum Bochum, Lothringer Allee 2, 44805 Bochum, Germany

Abstract

Abstract Cost-effective building energy optimization solutions have a strategic function to assist German and European energy policies for the simple reason that buildings account for 40% of the total energy consumption in Europe. The International Energy Agency considers energy efficiency as the first fuel and a major resource. In this work, a cost-effective building energy optimization system consisting of 14 different wireless network embedded sensors, control units (actuators), wireless communication protocol, multi-dimensional information management system, context sensitive graphical user interfaces and energy optimization software with artificial intelligence-backed control algorithms is examined. The R&D activity is accomplished in the ‘Intelligent Building Energy Management System’ research project, which is funded by the State of Lower Saxony (Germany) in the frame of Innovation Support Program between the years 2014 and 2018. The ‘Energy Optimization System (EOS)’, which is subject to this research, reduces the total energy use and CO2 emissions of buildings through optimization of energy-consuming building systems, such as heating, cooling, lighting systems and home/office appliances with the support of an integrated system solution consisting of artificial intelligence-based software and wireless network embedded hardware. The system is deployed and validated in two appropriately selected test buildings in Germany. It has been recorded that the system provides energy efficiency levels between 29.34% and 38.18% under different seasonal and occupancy conditions in office and residential building types. The developed system can be deployed to all types of historical and new buildings to optimize energy consumption and reduce carbon emissions.

Funder

State of Lower Saxony Innovation Support Program

European Union

Investment and Support Bank of State of Lower Saxony Nbank

Ministry for Environment, Energy and Climate Protection of State of Lower Saxony-Germany

Ministry for Economic Affairs, Labour and Transport of State of Lower Saxony-Germany

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3