Grid load forecasting based on hybrid ensemble empirical mode decomposition and CNN–BiLSTM neural network approach

Author:

Tao Peng1ORCID,Zhao Junpeng1,Liu Xiaoyu1,Zhang Chao1,Zhang Bingyu1,Zhao Shasha1

Affiliation:

1. State Grid Hebei Electric Power Co., Ltd. Marketing Service Center , Shijiazhuang 050000, China

Abstract

Abstract This article proposes an amalgamation of ensemble empirical mode decomposition (EEMD) and the convolutional neural network–bidirectional long short-term memory (CNN–BiLSTM) for the prediction of electricity grid load. Initially, the original load time series undergoes decomposition using EEMD, resulting in intrinsic mode functions (IMFs) that capture various load characteristics. Subsequently, a correlation analysis selects several IMFs closely related to the original sequence. These chosen IMFs are then utilized as input, with separate application of a one-dimensional CNN and a BiLSTM model for modeling and prediction purposes. The CNN automatically extracts temporal features from the different IMFs via its convolutional layers, whereas the BiLSTM effectively captures both short-term and long-term dependencies. In the end, a linear combination is employed to integrate the IMF predictions and reconstruct the final forecast for the electricity grid load. Experimental results demonstrate that this hybrid integration model, combining the adaptive decomposition ability of EEMD, feature extraction capability of CNN and temporal modeling ability of BiLSTM, improves the accuracy and robustness of electricity grid load forecasting compared to single models and ensemble models without EEMD.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3