Design of a partially premixed burner for biogas-fired wall-mounted boiler

Author:

Sun Mengxiao1,Huang Xiaomei1,Zhao Yi1,Zhang Pengyuan1,Zhou Yang2

Affiliation:

1. School of Civil Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China

2. Project Department, Foshan Gas Group Co., Ltd, No. 18, Nanhai Avenue Middle, Chancheng District, Foshan City, Guangdong 52800, China

Abstract

Abstract Biogas is deemed as one of the most promising renewable fuels emerging in the past several decades. At present, biogas is mainly applied to cooking for substituting fossil fuels. However, biogas is rarely reported to be used for space heating. In this paper, we designed a biogas-fired partially premixed burner for gas-fired wall-mounted boilers, which has the heat input of 25 kW and can be used for space heating and water heater tank heating. The reference gas was assumed as 60% of methane (CH4) and 40% of CO2, and the burner port area was designed as 4744.5 mm2 according to the calculation. Then, experiments were conducted to study the performance of this burner. Jet diameters were modified in order to investigate their effects on heat input, primary air ratio and flame stability of the burner. The results indicate that the burner shows superior performance when the jet diameter is 2.0 mm. Meanwhile, the primary air ratio (${\alpha}^{\prime }$) satisfies the design requirement. Moreover, a gas-fired wall-mounted boiler with this burner was examined to investigate the influence of different biogas composition on exhaust emissions and thermal efficiency. The results show that the concentration of CO in the flue gas meets the national standard when CH4 varied from 40% to 60% in the biogas. However, the thermal efficiency of the biogas-fired wall-mounted boiler reduces greatly with the increase of CH4 percentage.

Funder

National Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3