Application of PID optimization control strategy based on particle swarm optimization (PSO) for battery charging system

Author:

Wu Tiezhou1,Zhou Cuicui1,Yan Zhe1,Peng Huigang2,Wu Linzhang1

Affiliation:

1. Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, 28 Nanli Road, Hongshan District, Wuhan City, Hubei Province, 430068, China

2. Wuhan Haichuang Electronic Co., Ltd, Technology Department,Wuhan 430067, China

Abstract

Abstract The battery charging process has nonlinear and hysteresis properties. PID (Proportion Integration Differentiation) control is a conventional control method used in the battery charging process. The control effect is determined by the PID control parameters ${K}_p$,  ${K}_i$  and  ${K}_d$. The traditional PID parameter setting method is difficult to give the appropriate parameters, which affects the battery charging efficiency. In this paper, the particle swarm optimization (PSO) is used to optimize the PID parameters. Aiming at the defects of basic PSO, such as slow convergence speed, low convergence precision and easy to be premature, a modified particle swarm optimization algorithm is proposed, and the optimized PID parameters are applied to the battery charging control system. Also, the experimental results show that the battery charging process possesses better dynamic performance and the charging efficiency of the battery has increased from 86.44% to 91.47%, and the charging temperature rise has dropped by 1°C.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Reference15 articles.

1. Parameter optimization of PID controller based on crowd search algorithm;Yu;Comput Simul,2014

2. Design and simulation of fuzzy PID control system based on MATLAB;Yanyan;Electr Technol,2015

3. Research on PID parameter tuning based on improved genetic algorithm;Wang;Comput Digit Eng,2018

4. A modified particle swarm optimizer.;Shi;Advances in Natural Computation,1998

5. An adaptive velocity particle swarm optimization for high-dimensional function optimization;Arasomwan,2013

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3