Sustainable green campus in NEPAL: 3E analysis

Author:

Yadav Bharosh Kumar1,Rauniyar Pankaj Kumar2,Sudhakar K34,Bajracharya Tri Ratna5,Priya S Shanmuga6

Affiliation:

1. Department of Mechanical Engineering, Tribhuvan University, Institute of Engineering, Purwanchal Campus, 56700 Dharan-08, Nepal

2. Department of Electrical Engineering, Tribhuvan University, Institute of Engineering, Purwanchal Campus, 56700 Dharan-08, Nepal

3. Faculty of Mechanical and Automotive Engineering Technology, University Malaysia Pahang, Pekan, 26600, Pahang, Malaysia

4. Automotive Engineering Centre, Universiti Malaysia Pahang, Pekan, 26600, Pahang, Malaysia

5. Department of Mechanical Engineering, Tribhuvan University, Institute of Engineering, Pulchowk Campus, 44700 KTM, Nepal

6. Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India

Abstract

ABSTRACT In today’s world, where global warming is one of the greatest human challenges, sustainable energy generation is becoming increasingly relevant. The use of green and clean energy sources is the best way to minimize CO2, CO, NOX and other emissions of conventional energy usage. Solar photovoltaic (PV) systems are more beneficial and an exciting application to set up an eco-friendly green educational campus. In this regard, the potential sites within Tribhuvan University, Institute of Engineering, Purwanchal Campus, Dharan city, Nepal are analysed for grid-tied solar PV power plant installation to meet the 100% energy demand of the campus using energy, economic and environment-friendly analysis. The daily, monthly and annual load and solar irradiance data of past years of the campus have been analysed to estimate the solar PV plant’s capacity and system performance using PVSYST V7.0 software analysis tools .The simulation results show that 110 kWp of solar PV power plant will be sufficient for the entire campus to qualify for the first fully green-powered campus in Nepal, which corresponds to fulfill 66.4 MWh/year daytime energy demand out of total 161 MWh/year energy consumption of the campus with a capacity to generate a total of 181.5 MWh/year energy from the designed solar PV system. The result also shows that 115.1 MWh/year of surplus energy produced from the PV power plant can be injected into the utility grid to yield considerable savings in utility cost. On the basis of these results, campus authorities and stakeholders may commit to investing and implementing of this project to ensure that the campus is completely green.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3