Capacity allocation of HESS in micro-grid based on ABC algorithm

Author:

Zhang Yu1,Yan Zhe1,Zhou Cui Cui1,Wu Tie Zhou1,Wang Yue Yang1

Affiliation:

1. Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Hongshan District, Wuhan, Hubei 430068, China

Abstract

Abstract The hybrid energy storage system (HESS) is a key component for smoothing fluctuation of power in micro-grids. An appropriate configuration of energy storage capacity for micro-grids can effectively improve the system economy. A new method for HESS capacity allocation in micro-grids based on the artificial bee colony (ABC) algorithm is proposed. The method proposed a power allocation strategy based on low pass filter (LPF) and fuzzy control. The strategy coordinates battery and supercapacitor operation and improves the battery operation environment. The fuzzy control takes the state of charge (SOC) of the battery and supercapacitors as the input and the correction coefficient of the time constant of the LPF filter as the output. The filter time constant of the LPF is timely adjusted, and the SOC of the battery and supercapacitor is stable within the limited range so that the overcharge and over-discharge of the battery can be avoided, and the lifetime of the battery is increased. This method also exploits sub-algorithms for supercapacitors and battery capacity optimization. Besides, the Monte Carlo simulation of the statistic model is implemented to eliminate the influence of uncertain factors such as wind speed, light intensity and temperature. The ABC algorithm is used to optimize the capacity allocation of hybrid energy storage, which avoids the problem of low accuracy and being easy to fall into the local optimal solution of the supercapacitors and battery capacity allocation sub-algorithms, and the optimal allocation of the capacity of the HESS is determined. By using this method, the number of supercapacitors required for the HESS is unchanged, and the number of battery is reduced from 75 to 65, which proves the rationality and economy of the proposed method.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Reference11 articles.

1. An improved particle swarm optimisation algorithm applied to battery sizing for stand-alone hybrid power systems;Shang;Int J Elec Power Energ Syst,2016

2. Supercapacitor sizing based on desired power and energy performance;Kuperman;IEEE T Power Electr,2014

3. Optimal configuration scheme for hybrid energy storage system of super-capacitors and batteries based on cost analysis;Cheng;Automation of Elec Power Systs,2013

4. Capacity optimal modeling of hybrid energy storage systems considering battery life;Han;Proc CSEE,2011

5. Spectrum analysis based capacity optimization method of energy storage and diesel engines in island micro-grids;Xiao;Power Syst Technol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3